Health News | Study Finds Origination of Genes for Learning and Memory

Get latest articles and stories on Health at LatestLY. Researchers from the University of Leicester and its colleagues have found that the genes necessary for memory, learning, aggression, and other complex behaviours originated around 650 million years ago.

Coronary artery disease

England [UK], July 14 (ANI): A team of scientists led by researchers from the University of Leicester have found that the genes necessary for memory, learning, aggression, and other complex behaviours originated around 650 million years ago.

The findings are led by Dr Roberto Feuda, from the Neurogenetic group in the Department of Genetics and Genome Biology and other colleagues from the University of Leicester and the University of Fribourg (Switzerland), have now been published in Nature Communications.

Also Read | Israeli Doctors Perform Miracle Surgery, Reattach Palestinian Boy’s Head to His Neck After Horrifying Road Accident.

Dr Feuda said: “We’ve known for a long time that monoamines like serotonin, dopamine and adrenaline act as neuromodulators in the nervous system, playing a role in complex behaviour and functions like learning and memory, as well as processes such as sleep and feeding.

“However, less certain was the origin of the genes required for the production, detection, and degradation of these monoamines. Using the computational methods, we reconstructed the evolutionary history of these genes and show that most of the genes involved in monoamine production, modulation, and reception originated in the bilaterian stem group.

Also Read | Gut Bacteria Linked to Fatty Deposits in Heart Arteries, Reveals Research.

“This finding has profound implications on the evolutionary origin of complex behaviours such as those modulated by monoamines we observe in humans and other animals.”

The authors suggest that this new way to modulate neuronal circuits might have played a role in the Cambrian Explosion – known as the Big Bang - which gave rise to the largest diversification of life for most major animal groups alive today by providing flexibility of the neural circuits to facilitate the interaction with the environment.

Dr Feuda added: “This discovery will open new important research avenues that will clarify the origin of complex behaviours and if the same neurons modulate reward, addiction, aggression, feeding, and sleep.” (ANI)

(The above story is verified and authored by ANI staff, ANI is South Asia's leading multimedia news agency with over 100 bureaus in India, South Asia and across the globe. ANI brings the latest news on Politics and Current Affairs in India & around the World, Sports, Health, Fitness, Entertainment, & News. The views appearing in the above post do not reflect the opinions of LatestLY)

Share Now

Share Now